Молекулярная диагностика генетических заболеваний: особенности и методы исследования
Генетический анализ крови – звучит дорого, сложно и долго. Но на самом деле, это уже стандартный метод диагностики в лабораториях. Генетические тесты теперь назначаются для оценки индивидуальной реакции на лекарства, для проверки наследственных заболеваний, установления родства и даже для профилактических целей.
С расшифровкой генома человека в ХХ веке, мы стали понимать, как наш личный “код” влияет на жизнь. Несмотря на споры в научной сфере, мы можем оценить полезность долгосрочных исследований: теперь доступна молекулярно-генетическая диагностика.
В данной статье мы расскажем, как проводится генетический анализ крови и для чего это нужно.
Метод молекулярно-генетической диагностики является новым способом обследования организма, которое позволяет точно и быстро выявить вирусы и инфекции, мутации генетических материалов, вызывающих различные заболевания, а также оценить риски наследственных и других заболеваний. Однако, этот метод обладает далеко не полным спектром возможностей исследования ДНК.
Одним из главных преимуществ молекулярно-генетической диагностики является то, что это исследование проводится in vitro, минимизируя необходимость медицинского вмешательства. Благодаря этому метод можно успешно применять для диагностики заболеваний у эмбрионов, а также у ослабленных и тяжелобольных пациентов.
Кровь из вены является самым распространенным материалом для исследования молекулярно-генетической диагностики. Тем не менее, возможно извлечение ДНК/РНК из жидкостей и тканей других органов: слюны, соскоба слизистой рта, выделений из половых органов, околоплодной жидкости, волос, ногтей и т.д.
Этот метод молекулярно-генетической диагностики является значительным шагом к персонализированной медицине, так как он позволяет учитывать все особенности конкретного пациента при его обследовании и лечении.
Методы молекулярной диагностики находят широкое применение в различных областях медицины. Рассмотрим основные задачи и направления, где активно используется молекулярная диагностика.
Выявление патологий. Метод молекулярной диагностики используется в том числе в случаях, когда инфекционные или вирусные заболевания не могут быть определены с помощью обычных методов. Он позволяет обнаружить болезнь на ранней стадии еще до появления видимых симптомов.
Исследование аллергических реакций. Молекулярная диагностика применяется для определения аллергии: это более точный и безопасный метод для пациента, так как отсутствует прямой контакт с аллергеном.
Индивидуальная оценка рисков развития наследственных заболеваний. Метод молекулярной диагностики помогает выявить риск возникновения опасных патологий в будущем у взрослых и детей. Информация о моногенных болезнях позволяет оценить риски передачи наследственных заболеваний от родителей к ребенку, а знание о предрасположенности к мультифакторной патологии необходимо для профилактики болезней с помощью изменения образа жизни.
Перинатальная медицина. Метод молекулярной диагностики позволяет выявлять синдромы Дауна, Эдвардса, Патау, Тернера, Клайнфельтера еще до рождения ребенка. Также он помогает выявить генетические причины бесплодия и невынашивания беременности.
Фармакогенетика. Молекулярная диагностика позволяет объяснить, почему на некоторых людей действуют одни лекарства, а на других — иные. Это имеет особое значение для лечения тяжелых заболеваний, например, онкологических.
Спортивная медицина. Молекулярная диагностика помогает прогнозировать спортивные перспективы, учитывая генетические особенности каждого человека. Это полезно для того, чтобы выбрать для ребенка занятия, которые принесут ему наибольшую пользу для здоровья или позволят достичь спортивных результатов.
Многие медики видят в молекулярной диагностики возможность индивидуальной подборки препаратов для каждого пациента, учитывая его генетические особенности. Эта персонализированная терапия должна значительно уменьшить побочные эффекты лекарств и сделать лечение более эффективным.
Генетические исследования становятся актуальными в тех случаях, когда пациенту необходимо узнать информацию о своем здоровье. Это может понадобиться в следующих ситуациях:
- Для точной диагностики. Например, неправильно определенный аллерген или несвоевременно диагностированное вирусное заболевание может привести к неэффективному лечению.
- Для профилактики возможных заболеваний. Если есть повышенный риск заболевания раком или сердечно-сосудистыми заболеваниями, то пациент может принимать соответствующие меры, например, отказаться от вредных привычек.
- Для повышения эффективности лечения. Онкозаболевания имеют множество вариантов лечения, и выбор правильной тактики способствует более эффективному лечению.
Одной из отдельных групп генетических исследований являются исследования ДНК, которые проводятся в связи с планированием или рождением ребенка. В этом случае родители обращаются в лабораторию, чтобы:
- Изучить свою генетическую совместимость и оценить риски наследственных заболеваний будущего потомства.
- Исследовать состояние плода, чтобы выявить синдромы и опасные патологии.
- Диагностировать заболевания и аллергические реакции у младенца.
- Определить, какие спортивные занятия, что есть и какой образ жизни будут наиболее полезны для ребенка.
- Установить отцовство или материнство.
Статья: Ход исследования
Какой бы метод молекулярно-генетического исследования вы не выбрали, он включает в себя ряд этапов. Они следующие:
- Взятие биоматериала. Чаще всего для исследования используют кровь пациента. После получения материала его маркируют и транспортируют в лабораторию.
- Выделение ДНК/РНК.
- Проведение исследований в соответствии с выбранным методом.
- Изучение и трактовку результатов.
- Выдачу заключительного мнения.
Методы молекулярно-генетической диагностики – это совокупность лабораторных методов, основанных на анализе генетического материала (ДНК и РНК). Они позволяют определять наличие или отсутствие генетических изменений, а также выявлять наследственную предрасположенность к различным заболеваниям.
Одним из наиболее распространенных методов молекулярно-генетической диагностики является полимеразная цепная реакция (ПЦР). Этот метод позволяет увеличивать количество копий генетического материала для дальнейшего анализа. Также существуют методы, основанные на гибридизации (соединении генетических материалов по определенным закономерностям), например, гибридизационный анализ с использованием РНК-зонда.
Методы молекулярно-генетической диагностики широко применяются в медицине для диагностики наследственных заболеваний, а также в судебно-медицинской экспертизе для определения отцовства или материнства. Они позволяют получить точные и надежные результаты, а также ускорить процесс диагностики и лечения.
Методы молекулярной цитогенетики являются эффективным средством для выявления наследственных заболеваний, психических отклонений и врожденных пороков развития. Цитогенетический анализ проводится для изучения хромосом с помощью специальных микроматриц, нанесенных на ДНК-чипы. Для этого из образца крови выделяют лимфоциты, помещая их на 48-72 часа в питательную среду, после чего проводят их исследование. Обычно данный анализ назначается нечасто, главным образом для изучения причин бесплодия и невынашивания беременности, а также для уточнения диагноза у детей при подозрении на врожденные заболевания. Точность цитогенетического анализа очень высока, однако метод является трудоемким и длительным, так как результат можно получить только через 20-30 дней после сдачи исследуемого образца.
Одним из достоинств цитогенетического анализа является его специфичность, которая позволяет выявлять практически без погрешностей небольшое количество патологий, таких как, например, аутизм. Но в то же время данный метод имеет и недостатки, так как не способен выявить многие другие наследственные заболевания.
Название статьи: Метод ПЦР в молекулярной диагностике: особенности и применение
Метод полимеразной цепной реакции (ПЦР) считается самым популярным и фундаментальным в молекулярной диагностике, так как он позволяет выявлять патологии с высокой точностью и чувствительностью, а также обладает высокой скоростью проведения исследования. Метод был изобретен в 1983 году, и с тех пор его применение активно расширяется. Молекулярная диагностика ДНК/РНК методом ПЦР позволяет выявить различные заболевания, такие как ВИЧ, вирусные гепатиты, инфекции, передающиеся половым путем, туберкулез, боррелиоз, энцефалит и многие другие.
Особенностью метода является возможность выбора участка ДНК и его многократное дублирование в лаборатории с помощью специальных веществ. Биоматериал для диагностики может быть представлен кровью, слюной, мочой, выделениями из половых органов, плевральной и спинномозговой жидкостью, тканями плаценты и т.д. В зависимости от выбранного биоматериала и заболевания применяются соответствующие протоколы диагностики.
Таким образом, метод ПЦР в молекулярной диагностике имеет широкое применение и является необходимым инструментом для точной и своевременной диагностики многих заболеваний.
Флуоресцентная гибридизация (FISH) – это специфический молекулярный метод исследования, фокусирующийся на уникальных нуклеотидных соединениях отдельно взятой хромосомы или ее сегментах. Для этого используются меченые флуоресцентными маркерами короткие ДНК-последовательности, которые выступают в качестве зондов и позволяют обнаружить атипичные гены. Исследовать можно кровь, костный мозг, плаценту, ткани эмбриона, биопсии и другие биоматериалы. Однако, образец необходимо доставить в лабораторию как можно быстрее после его изъятия.
В основном FISH-метод используется в онкологии (например, для отслеживания остаточных злокачественных клеток после химиотерапии) а также в пренатальной диагностике (для выявления риска развития у плода врожденных пороков), гематологии. Метод FISH, с точностью около 0,5%, является чрезвычайно чувствительным в обнаружении поврежденных фрагментов ДНК. Результаты исследования получают в течение 72-х часов.
Стоит отметить, что FISH-метод, более специфичен, чем микроматричный цитогенетический анализ, и может использоваться только с целью подтверждения или опровержения предполагаемого диагноза.
Метод микрочипирования основан на использовании зондов, помеченных флуоресцентными последовательностями ДНК, которые извлекаются из биоматериала пациента. Эти зонды затем сравниваются с образцами, размещенными на микрочипе, который представляет собой стеклянную, пластиковую или гелевую базу, способную вместить тысячи микротестов, длиной от 25 до 1000 нуклеотидов. ДНК-микрочип может использоваться для анализа любого биоматериала, из которого можно извлечь образец ДНК/РНК.
Этот метод применяется в медицине, в том числе в онкологии и кардиологии для изучения генетической предрасположенности и оценки состояния организма. Он точен и чувствителен, результаты исследования готовы через 4–6 дней после забора материала.
Однако, в России микрочипирование применяют редко, что является его основным недостатком. В западных странах исследования ДНК/РНК уже распространены повсеместно, но в России эту услугу предлагают не все клиники.
Важно отметить, что молекулярная диагностика является неинвазивным и точным методом обследования организма, который нашел применение в разных областях медицины. Однако, информация, связанная со здоровьем и медициной, представлена только для ознакомительных целей и не должна стать поводом для самодиагностики или самолечения.
Фото: freepik.com